PRACTICE TEST: CLASS-X

Maths X Polynomials

- **1.** If α and β are the zeroes of the quadratic polynomial f(x)= 2x²- 5x+7, find a polynomial when zeroes are 2α + 3β and 3α + 2β .
- **2.** Find the values of and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.
- **3.** If the polynomial $6x^2 + 8x^3 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 5$, then find the values of *a* and *b*.
- **4.** If the product of the zeroes of the polynomial $ax^2 6x 6$ is 4, find the value of *a*.
- 5. If the polynomial $x^4 6x^3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$, find other zeroes.
- 6. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be (ax + b). Find *a* and *b*.
- **7.** Find a cubic polynomial with sum, sum of the product of the zeroes taken two at a time, and product of its zeroes as, -2, -7, -14, respectively.
- **8.** If zeroes of the polynomial $x^3 3x^2 + x + 1$ are a b, a, a + b, find a and b.
- **9.** If α and β are the zeroes of the polynomial αx^2 then evaluate-(a) $1/\alpha^3 + 1/\beta^3$ (b) $\alpha^2/\beta + \beta^2/\alpha$.
- **10.** If α and β are the zeroes of the quadratic polynomial $2x^2 5x + 7$. Find a quadratic polynomial whose zeroes are α^2/β and β^2/α .

Sh,